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Abstract. This paper shows that the approach based on Gribov’s ideas for photon–proton interaction is able
to describe the experimental data over a wide range of photon virtualities Q2 = 0–100GeV2 and energies√

s = W = 3–300GeV. A simple model is suggested which provides a quantitative way of describing
the matching between short and long distances (between “soft” and “hard” processes) in photon–proton
interaction at high energy. The main results of our analysis are: (i) the values of the separation parameters
differentiating the soft and hard interactions are determined; (ii) the additive quark model can be used to
calculate the soft contribution to the photon–proton interaction; (iii) a good description of the ratio σL/σT

is obtained; and (iv) a considerable contribution of the soft process at large Q2, and of hard processes at
small Q2 was found.

1 Introduction

The rich and high precision data on deep inelastic ep scat-
tering at HERA [1,2], covering both low and high Q2 re-
gions, lead to a theoretical problem of matching the non-
perturbative (“soft”) and perturbative (“hard”) QCD do-
mains. This challenging problem has been under close in-
vestigation over the past two decades, starting from the
pioneering paper of Gribov [3] (see also [4]).

Based on Gribov’s general approach, one can interpret
two time sequences of the γ∗p interaction (see Fig. 1):

1. First, the γ∗ fluctuates into a hadron system (quark–
antiquark pair to the lowest order) well before the in-
teraction with the target.

2. Then, the converted quark–antiquark pair (or hadron
system) interacts with the target.

These two stages are expressed explicitly in the double
dispersion relation suggested in [3]:

σ(γ∗N) =
αem

3π

∫
Γ (M2)dM2

(Q2 +M2)
σ(M2,M ′2, s)

Γ (M ′2)dM ′2

(Q2 +M ′2)
, (1)

where M and M ′ are the invariant masses of the incoming
and outgoing quark–antiquark pairs, σ(M2,M ′2, s) is the
cross section of a qq̄ interaction with the target, and the
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Fig. 1. The generalized Gribov’s formula

vertices Γ 2(M2) and Γ 2(M ′2) are given by Γ 2(M2) =
R(M2), where R(M2) is the ratio:

R(M2) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

, (2)

which has been measured experimentally. For large masses
(M, M ′ � M0) we have Γ (M2 ≥ M2

0 ) × Γ (M ′2 ≥
M2

0 ) −→ R(M2 ≥ M2
0 ) = 2, where we assume that that

the number of colors Nc = 3. M0 is a typical mass (a sep-
aration parameter), which is of the order of M0 = 1 GeV,
determined directly from the experimental data [5].

The key problem in all approaches utilizing (1) is the
description of the cross section σ(M2,M ′2, s). In this pa-
per we follow the approach suggested in [6], which is based
on the ideas of Badelek and Kwiecinski [7]. Below we list
the main steps of this approach.

1. We introduce M0 ≈ 1 GeV in the integrals over M
and M ′ which plays the role of a separation param-
eter. For M, M ′ > M0 the quark–antiquark pair are
produced at short distances (r⊥ ∝ 1/M < 1

M0
), while

for M, M ′ < M0 the distance between the quark and
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antiquark is too long (r⊥ ∝ 1
M > 1

M0
), and we cannot

treat this qq̄ pair in perturbative QCD (pQCD). Ac-
tually, we cannot even describe the produced hadron
state as a qq̄ pair.

2. For M, M ′ < M0 we use the additive quark model
(AQM) [8] in which

σ(M2,M ′2, s) = σsoft
N (M2, s)δ(M2 −M ′2) (3)

= (σtot(qN) + σtot(q̄N)) δ(M2 −M ′2)

The above assumption allows us to simplify the Gribov
formula of (1):

σ(γ∗N) =
αem

3π

∫
R(M2)M2dM2

(Q2 +M2)2
σN (M2, s) . (4)

3. For M, M ′ > M0 we consider the system with mass
M and/orM ′ as a short-distance quark–antiquark pair,
and describe its interaction with the target in pQCD
(see Fig. 2).
The exact formulas for σhard(M2,M ′2, s) are given be-
low (see also [6]), but one can see from Fig. 2 that this
interaction can be expressed through the gluon struc-
ture function, and it is not diagonal with respect to
the masses, contrary to the soft interaction of a hadron
system with small mass.

4. In principle, the short distance between the quark and
antiquark leads to short distances in the gluon–nucleon
interaction. However, the typical distance of the gluon
interaction rG ∝ 1/l⊥ (see Figs. 1 and 2) is larger than
the size of the quark–antiquark pair and l⊥ < k⊥.
It turns out that the calculation with M0 ∼ 1 GeV
demands a new scale in the gluon–nucleon interac-
tion. We introduce it assuming that the gluon struc-
ture function xG(x, l2⊥) behaves as xG(x, µ2) × l2⊥

µ2 for
l2⊥ ≤ µ2. This means that we assume that the gluon–
hadron total cross section is not equal to zero for long
distances (in the soft kinematic region). It should be
stressed that we introduce two scales for soft nonper-
turbative interactions, distinguishing between quark
and gluon interactions. The two scales appear natu-
rally in our models for soft, nonperturbative interac-
tions. For example, in the AQM, which we use for σsoft,
these two scales are the size of a hadron (distance be-
tween the quark and antiquark), and the size of the
constituent quark, which is related to gluon interac-
tion scale.

5. As has been discussed, we use the AQM [see (3)] to
calculate σsoft. For the vector meson cross section the
AQM leads to

σR =
1
2
(
σ(π+p) + σ(π−p)

)
. (5)

For the pion–proton cross section, we use the
Donnachie–Landshoff Reggeon parameterization [9],
with an energy variable which is appropriate for the

γ* γ* γ* γ*
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⊥ k
→

⊥
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⊥
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l
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Fig. 2. “Hard” contribution to σ(M2, M ′2, s) in perturbative
QCD

interaction of a hadronic system of mass M with the
target (see [6] for details).

σM2N (s) = A(
1
xM

)αP(0) − 1 + B (
1
xM

)αR(0) − 1, (6)

with

αP = 1.079
αR = 0.55

xM =
M2

s
A = 13.1 mb
B = 41.08 mb . (7)

The values of A and B are chosen so that (6) is valid
for the ρ–proton interaction. Using (6) in Gribov for-
mula (4), we derive the soft transverse contribution to
σ(γ∗p):

σsoft
T =

αem

3π

∫ M2
0

0

R(M2)M2dM2

(Q2 +M2)2

×
{
A(

1
xM

)αP(0) − 1 + B (
1
xM

)αR(0) − 1
}
. (8)

It has been shown in [6] that even though the simple
model discussed above reproduces the main features of the
experimental data, it has several deficiencies:

– The calculations of the soft cross section appeared to
overestimate the data, and to overcome this, the soft
contribution was multiplied by a factor κ = 0.6. There
is no physical justification for such a small value.

– The contribution of a longitudinal polarized virtual
photon to σ(γ∗p) was neglected.

– An old GRV ‘94 parameterization was used for the
gluons’ distribution inside the proton. This gave an
energy dependence of σ(γ∗p) that is steeper than the
published data.

In the present paper, we reexamine these points devel-
oping a formalism which also takes into account σL, the
longitudinal part of σ(γ∗p), for both the soft and the hard
components. We find that the contribution of σL signifi-
cantly improves the energy dependence of σ(γ∗p), and is
in good agreement with the data for x < 10−2.
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Fig. 3. Diagrams which contribute to the scattering of a q̄q
pair off the target proton

A similar approach to photon–proton interaction was
developed in [10] where quite different scales have been in-
troduced. The goal of such an approach (see [6,7,10]) is to
find parameters that separate the long-distance (nonper-
turbative) and short-distance (perturbative) interactions
in QCD. A similar philosophy to ours is used in [11], where
an attempt is made to describe photon–proton interac-
tions, with the assumption that the main contribution
stems from short distances; the long-distance interaction
appears as a result of the shadowing corrections.

The description of σ(γ∗p) can be achieved in quite a
different way with the generalized vector dominance model
[4] or a Regge-motivated fit of the experimental data [12,
13]. In these approaches, one loses the explicit connection
with the microscopic theory, which makes further theoret-
ical interpretation of the results rather difficult.

2 Description of the model

2.1 The contribution of a transverse polarized photon

As we have discussed previously, the main assumption of
our model is that σ(M2,M ′2, s) in (1) can be calculated
as

σ(M2,M ′2, s) = σsoft
N (M2 < M2

0 , s) δ(M
2 −M ′2)

+σhard(M2 > M2
0 ,M

′2 > M2
0 , s) . (9)

In the previous section, we discussed the calculation of
σsoft. Now we present for completeness our formulas for
σhard, which have been given in [6]. The pQCD contribu-
tion for σT, within the framework of the two gluon model,
is illustrated in the four diagrams shown in Fig. 3. The
production amplitude Mλλ′ of the q̄q can be factorized
into the wave function ψλλ′ of the q̄q system inside the
virtual photon, and the amplitude Tλλ′ for the scattering
of the q̄q pair off the proton:

Mλλ′(k⊥, z) =
√
Nc

∫
d2k⊥′

∫ 1

0
dz′ψλλ′(k⊥′, z′)

×Tλλ′(k⊥′, z′; k⊥, z) . (10)

The transition amplitude Tλλ′ for the four contributions
is:

Tλλ′(k⊥′, k⊥)

= i
4πs
2Nc

∫
d2`⊥
`4⊥

[
2δ(k′

⊥ − k⊥) − δ(k′
⊥ − k⊥ − `⊥)

−δ(k′
⊥ − k⊥ + `⊥)

]
αS(`2⊥)f(x, `2⊥) , (11)

where

f(x, `2) =
∂xG(x, `2)
∂ ln `2

(12)

(see [14] for details). Substituting (11) into (10), we have

Mλλ′ = i
2π2s√
Nc

∫
d`2⊥
`4⊥

αS(`2⊥)f(x, `2⊥)∆ψλλ′ , (13)

where the definition of ∆ψ is to be understood from (10)–
(13):

∆ψ = 2ψ(k⊥, z) − ψ(k⊥ − `⊥, z) − ψ(k⊥ + `⊥, z) . (14)

ψλλ′ has been calculated in [14] both for a transverse and
a longitudinal polarized incoming photon. The wave func-
tion for a transverse polarized photon and the amplitude
for producing q̄q with helicities λ and λ′ read:

ψ±
λλ′ (k⊥, z) = −δλ,−λ′Zfe [(1 − 2z)λ∓ 1]

2ε± · k⊥
Q̄2 + k2

⊥
, (15)

M±
λλ′ = −2Zfe

(
i
2π2s√
Nc

)
δλ,−λ′ [(1 − 2z)λ∓ 1] ε± · k⊥

×
∫

d`2⊥
`4⊥

αS(`2⊥)f(x, `2⊥)
{

1
Q2 + k⊥2 − 1

2k⊥2

+
Q2 − k⊥2 + `2⊥

2k⊥2
√(

Q2 + k⊥2 + `2⊥
)2 − 4k⊥2`2⊥


 . (16)

In (15) and (16), Zf is the charge of the quark with flavor
f in units of the electron charge −e, Q̄2 ≡ z(1− z)Q2 and
ε± denotes the photon polarization vector presented in a
circular basis,

ε± =
1√
2

(0, 0, 1,±i) . (17)

To evaluate the cross section one should first sum over
the quark helicities λ and λ′, and average over the two
transverse polarization states (±) of the photon

|MT |2 =
32π4s2

Nc
Z2

fe
2 [z2 + (1 − z)2

]×∫
d`2⊥
`4⊥

αS(`2⊥)f(x, `2⊥) × (18)
k⊥2 − Q̄2

k⊥2 + Q̄2
+

Q̄2 − k⊥2 + `2⊥√(
Q̄2 + k⊥2 + `2⊥

)2 − 4k⊥2`2⊥


 .
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The cross section is obtained by integration over z and
over k⊥,

σT =
αem

4π2Nc

∫ 1

0
dz
[
z2 + (1 − z)2

] ∫ dk2
⊥

Q̄2 + k2
⊥

×
∫

d`2⊥
`4⊥

αS(`2⊥)f(x, `2⊥) (19)

×

k⊥2 − Q̄2

k⊥2 + Q̄2
+

Q̄2 − k⊥2 + `2⊥√(
Q̄2 + k⊥2 + `2⊥

)2 − 4k⊥2`2⊥


 .

Following [6], in order to perform the integration over z,
we introduce the variables M and M̃ :

M2 =
k2

⊥
z(1 − z)

M̃2 =
`2⊥

z(1 − z)
, (20)

and rewrite the integrals of σT in terms the variables M ,
M̃ and `⊥,

σT =
αem

4π2Nc

∫
dM2

Q2 +M2

∫
dM̃2

M̃2

∫
d`2⊥
`2⊥

1 − 2 `2⊥
M̃2√

1 − 4 `2⊥
M̃2

× αS(`2⊥)f(x, `2⊥) (21)

×



M2 −Q2

M2 +Q2 +
Q2 −M2 + M̃2√(

Q2 +M2 + M̃2
)2

− 4M2M̃2


.

Using a generalization of the Gribov approach, we take a
cutoff on the integration over M2 and insert the ratio (2)
inside the integration sign,

σhard
T

=
αem

2π2Nc

∫ ∞

M2
0

dM2R(M2)
Q2 +M2

∫
dM̃2

M̃2

×
∫

d`2⊥
`2⊥

1 − 2 `2⊥
M̃2√

1 − 4 `2⊥
M̃2

αS(`2⊥)f(x, `2⊥) (22)

×



M2 −Q2

M2 +Q2 +
Q2 −M2 + M̃2√(

Q2 +M2 + M̃2
)2

− 4M2M̃2


 .

The last integral in (22) can be integrated by parts, using
(12). In the limit 4`2⊥ � M̃2, the value of the integral is
dominated by the upper limit of the integration, therefore
we replace `2⊥ in αS(`2⊥) and xG(x, `2⊥) with M̃2/4, and
obtain, for three colors,

σhard
T

=
2π αem

3

∫ ∞

M2
0

dM2R(M2)
Q2 + M2

×
∫ ∞

0

dM̃2

M̃4
αS(

M̃2

4
)xG(x,

M̃2

4
) (23)

×

M

2 −Q2

M2 +Q2 +
Q2 + M̃2 −M2√

(Q2 +M2 + M̃2)2 − 4M2 M̃2


 .

In the case of heavy quarks, we assume that the quark is
heavy enough so that any contribution to the soft cross
section can be neglected. The heavy quark contribution is
then written with the replacements: 4M2 M̃2 → 4 (M2 −
4m2

Q) M̃2, and R(Q2) → RQQ(M2). RQQ is the heavy
quark contribution to the ratio (2) and mQ is the mass of
the heavy quark,

σhard
T,Q̄Q =

2π αem

3

∫ ∞

M2
0

dM2RQQ(M2)
Q2 +M2

∫ ∞

0

dM̃2

M̃4

×αS

(
M̃2

4

)
xG

(
x,
M̃2

4

)
M

2 −Q2

M2 +Q2 (24)

+
Q2 + M̃2 −M2√

(Q2 +M2 + M̃2)2 − 4(M2 − 4m2
Q)M̃2


 .

In the above formulas, x = x(M2) = (Q2 +M2)/W 2 with
W being the center-of-mass energy of the photon–nucleon
interaction.

2.2 The contribution
of a longitudinal polarized photon

2.2.1 Soft contribution to σL

A priori, it is straightforward to write the formula for the
soft component of σL in AQM. The result is similar to our
model for σT, except that M2 in the numerator should be
replaced with the photon virtuality. This factor causes the
longitudinal cross section to vanish for Q2 → 0 (see (7)
for the values of the parameters).

σsoft
L =

αem

3π

∫ M2
0

0

R(M2)Q2dM2

(Q2 +M2)2

×
{
A(

1
xM

)αP(0) − 1 + B (
1
xM

)αR(0) − 1
}
. (25)

However, it turns out that the AQM overestimates the
experimental data, and it has to be reduced with some
phenomenological procedure, such as a numerical factor
[15] or a phenomenological function which decreases with
Q2 [10]. In our formalism, the ratio between the AQM and
pQCD contributions depends on the separation parameter
M0. Thus, by lowering the value of M0, one suppresses the
soft component. We have found that for the longitudinal
part of the cross section, taking any value of M0 that
is below the resonance mass fits the experimental data,
as opposed to the transverse cross section where we used
0.7 < M2

0 < 0.9 GeV2.
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2.2.2 Hard contribution to σL

We calculate the pQCD contribution for σL from the di-
agrams of Fig. 3 using (10)–(14). For the case of a longi-
tudinal polarized incoming photon, we use the expression
derived in [14] for the wave function

ψL
λλ′ = −2δλ,−λ′ZfeQz(1 − z)

1
Q̄2 + k2

⊥
, (26)

and substitute it in (13) to obtain the amplitude for a
longitudinal photon to produce q̄q with helicities λ and λ′

ML
λλ′

= −4δλ,−λ′ZfeQz(1 − z)i
2π2s√
Nc

×
∫

d`2⊥
`4⊥

αS(`2⊥)f(x, `2⊥)

×

 1
Q̄2 + k⊥2 − 1√(

Q̄2 + k⊥2 + `2⊥
)2 − 4k⊥2`2⊥


. (27)

The cross section is then obtained by squaring, summing
over the final helicities and integrating over z and k⊥,

σL =
16παem

Nc

∑
Z2

fQ
2
∫ 1

0
dz [z(1 − z)]2

∫
dk2

⊥
Q̄2 + k2

⊥

×
∫

d`2⊥
`4⊥

αS(`2⊥)f(x, `2⊥) (28)

×

 1
Q̄2 + k⊥2 − 1√(

Q̄2 + k⊥2 + `2⊥
)2 − 4k⊥2`2⊥


 .

Changing the integration variables k2
⊥ and `2⊥ to M and

M̃ , respectively, using (20), we have

σL =
16παem

Nc

∑
Z2

fQ
2
∫ 1

0
dz
∫

dM2

Q2 +M2

×
∫

dM̃2

M̃4
αS(z(1 − z)M̃2)f(x, z(1 − z)M̃2) (29)

×




1
Q2 +M2 − 1√(

Q2 +M2 + M̃2
)2

− 4M2M̃2


 .

We now write the formula for σhard
L in the same way that

we did in Sect. 2.1, by taking a cutoff on the integration
over M2, and insert the ratio (2) inside the integration
sign,

σhard
L

=
8παem

Nc
Q2
∫ ∞

M2
0

R(M2)dM2

Q2 +M2

∫ ∞

0

dM̃2

M̃4

×
∫ 1

0
dzf

(
x, z(1 − z)M̃2

)
αS

(
z(1 − z)M̃2

)

×




1
Q2 +M2 − 1√(

Q2 +M2 + M̃2
)2

− 4M2M̃2


 . (30)

Recalling (12), we can integrate (30) by parts and obtain
(for Nc = 3),

σhard
L =

8παem

3
Q2
∫ ∞

M2
0

R(M2)dM2

Q2 +M2

∫ ∞

0

dM̃2

M̃4
xG
(
x, M̃2

)

×

 1
Q2 +M2 − 1√

(Q2 +M2 + M̃2)2 − 4M2M̃2

−
M̃2

(
Q2 + M̃2 −M2

)
(√

(Q2 +M2 + M̃2)2 − 4M2M̃2

)3



, (31)

where

xG
(
x, M̃2

)
≡
∫ 1

0
xG
(
x, z(1 − z)M̃2

)
×αS

(
z(1 − z)M̃2

)
dz . (32)

For σhard
L,Q̄Q

, the contribution of heavy quarks to the lon-

gitudinal component of σ(γ∗p), we replace 4M2M̃2 by
4(M2 − 4m2

Q)M̃2 and R(Q2) with RQQ(M2), as we did
for the transverse part:

σhard
L,Q̄Q

=
8παem

3
Q2
∫ ∞

M2
0

RQQ(M2)dM2

Q2 +M2

×
∫ ∞

0

dM̃2

M̃4
xG
(
x, M̃2

)


1
Q2 +M2

− 1√
(Q2 +M2 + M̃2)2 − 4(M2 − 4m2

Q)M̃2

×
M̃2

(
Q2 + M̃2 −M2

)
(√

(Q2 +M2 + M̃2)2 − 4(M2 − 4m2
Q)M̃2

)3


 .(33)

3 Comparison with the experimental data

We now present the results for our calculation of σ(γ∗p)
from the master equation

σ(γ∗p) = σsoft
T + σhard

T + σhard
T,Q̄Q

+σsoft
L + σhard

L + σhard
L,Q̄Q . (34)

As stated, our model has three parameters, namely,
M0,L,M0,T, and µ. In [6], the relatively high value of



694 E. Gotsman et al.: Total γ∗p cross section

Fig. 4. Comparison of the gluon distribution parameterizaions
which were used in (34) to calculate σ(γ∗p). The full triangles
correspond to data points which have been extracted in [19]
from experimental data

M0 =
√

5 GeV was taken, in order to give an energy de-
pendence that was in a reasonable agreement with the
published experimental results. We found that if the hard
longitudinal contributions are not neglected, the trans-
verse separation parameter can be reduced to the value of
0.7 < M2

0,T < 0.9 GeV2, while the longitudinal one can
be taken to be M2

0,L ∼< 0.4 GeV2. The results of the calcu-
lation are stable if the separation parameters are chosen
within these bounds.

In the calculation of the hard components of σ(γ∗p),
we need to specify the input gluon distribution xG(x,Q2)
which appears in the formulas. We have tried several op-
tions: GRV’94 [16], GRV’98 [17] and MRST’98 [18]. We
compare the results of each input distribution for the cal-
culation of σ(γp) in Fig. 4, where it is obvious that the
best parameterization for our purpose is MRST ‘98, which
yields, together with our formalism, a good description of
the data.

A difficulty in our calculation comes from the integra-
tion at very low M2, where the published parameteriza-
tions for xG are not valid. Naturally one has two possible
options: The first is to impose a low cutoff on the inte-
gration below M2 = µ2. The second option is to use the
general property of the gluon structure function, which is
linear in Q2 at very small values of Q2, and to rely on this
property for the low-mass region:

xG(x, l2 < µ2) =
l2

µ2xG(x, µ2) . (35)

Fig. 5. σ(γ∗p) as a function of W 2, together with the experi-
mental data. The full triangles correspond to data points that
have been extracted in [19] from experimental data

In our calculation for the low mass integration, we used
(35) for the gluon distribution. The coupling αS(Q2) was
also kept fixed for Q2 < µ2. The value of µ2 was taken
as the minimal value allowed in the input parameteriza-
tion used: µ2 = 0.4, 0.8, 1.25 GeV2 for GRV ‘94, GRV ‘98,
and MRST ‘98 respectively. Notice that for the MRST
parameterization µ2 = 1.25 GeV2 > M2

0 . This means that
the transition from soft to hard is not sharp, and we still
have (35) as a soft signature inside our hard formalism at
M2

0 < M2 < µ2.
In Fig. 5, we show the results of our calculation for

σ(γ∗p) as a function of W 2 for fixed values of Q2, to-
gether with the published experimental results. The cal-
culated results are shown as a band which corresponds to
the two limits on M0,T. It is clear from the figure that the
width of the band decreases with increasing Q2. As for the
longitudinal separation parameter, the results are not sen-
sitive to the choice of M0,L, and in all our calculations we
simply used M0,L = 2mπ. The thick line marks the region
of small x: to the left of it, x is not small enough to jus-
tify use of our model. One can see that for x < 10−2, our
results reproduce the experimental results both in value
and in energy dependence.

In Fig. 6, we show our calculations for σ(γ∗p) for fixed
values of W 2 as a function of Q2, scaled by factors of 1–
128. The small vertical thick lines delineate the boundary
x = 10−2; to the right of the marks, our results are not
reliable.

The longitudinal component of σ(γ∗p), according to
our calculation, reaches a maximum value of 25% of the
total cross section at x ≈ 10−2. For small x, this result
is closer to the published data [20] than the results of
[10], where they obtained σL for x ≈ 10−2 to be 15% of
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Fig. 7. The ratio of
σL
σT

as a function of x

the total cross section. The ratio of the longitudinal cross
section to the transverse cross section, as a function of x,
is shown in Fig. 7 together with the (small x) data of [20].

Figure 8 illustrates the importance of the heavy quarks
contributions σhard

T,Q̄Q
and σhard

L,Q̄Q
(see (24) and (33)). The

contribution has a mild W 2 dependence, but it is Q2-
dependent, and for large Q2, the ratio σheavy/σlight gets
as high as 0.3–0.4. We present also the ratio of hard to
soft contributions. Since M0,L is smaller than the lightest

Fig. 8. The ratio of σheavy

σlight at fixed Q2

Fig. 9. The ratio of σsoft

σhard at fixed Q2

resonance mass, the AQM contribution to the longitudinal
component is suppressed, and therefore what we call a soft
contribution is actually the transverse AQM calculation.

In Fig. 9, we present the ratio σsoft/σhard at fixed val-
ues of Q2, where a clear power law behavior as a function
of W 2 can be seen. In soft processes, the hard contribu-
tion is minor but is still present even for relatively small
values of Q2. The soft signature in hard processes is also
present, but is smaller. For high virtualities it decreases
from a few percent at low energy, to less than 1% at high
energies.
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4 Conclusions

In this paper, we have shown that an approach based on
Gribov’s proposal provides a successful description of the
experimental data on photon–proton interaction, over a
wide range of photon virtualities 0 ≤ Q2 ≤ 100 GeV2,
and energies 3 ≤ √

s (= W ) ≤ 300 GeV. The key assump-
tion on which our approach is based is that the nonper-
turbative and the perturbative QCD contributions in the
Gribov formula can be separated by the parameter M0.
Our successful reproduction of the experimental data (see
Figs. 5 and 6) shows that this assumption appears to be
valid. It further lends credence to use of the additive quark
model (AQM) to describe the nonperturbative contribu-
tion. The successful use of the AQM leads to an improved
result in this paper, as compared to our previous result
[6], where we found it necessary to introduce a damping
factor for the AQM.

The second important by-product of our calculation is
the simple method we have used to distinguish between
nonperturbative (soft) and perturbative (hard) contribu-
tions. We have used three separation parameters: M0,T,
M0,L and µ. The values of these parameters, M2

0,T =
0.7 − −0.9 GeV2, M2

0,L ≤ 0.4 GeV2 and µ2 ≈ 1 GeV2,
were determined by fitting to the experimental data. We
believe that these values may be useful in the future for a
more theoretical description of the matching between soft
and hard processes in QCD.

The third result we find interesting is that the GRV
parameterizations of the structure functions cannot suc-
cessfully describe the experimental energy dependence of
the total cross section at small values of Q2 (see Fig. 4),
while the MRST parameterizations can. This result shows
the interdependence of deep inelastic scattering data, and
the theoretical description of the matching of the soft and
hard contributions.

In addition, we obtain the following:

1. A description of the ratio σL/σT (see Fig. 7) that is in
good agreement with the experimental data and other
approaches. The fact that σL appears to have only a
hard contribution should be stressed, as this could be
a possible window for particular features of nonpertur-
bative QCD.

2. A considerable contribution of the soft processes at
rather large values of photon virtualities Q2. For ex-
ample at Q2 = 15 GeV2 and σsoft/σhard ≈ 4% at
W = 10 GeV (see Fig. 9). We also find, at low Q2, a
contamination of the soft processes by the hard ones.
For high-energy real photoproduction, this contamina-
tion amounts to about 5%. We believe that this fact
should be taken into account when interpreting exper-
imental data, especially as far as their energy depen-
dence is concerned.

3. The prediction of the cross section for the heavy-quark
production (see Fig. 8) which is almostW -independent,
while showing a steep Q2 decrease.

We propose a simple and successful phenomenological
model for the photon–proton interaction, which provides
a method for matching the soft and hard interactions at
high energy, and which can be a guide for future theo-
retical approaches. It is worth mentioning that even in
its present form, our model can be useful for determin-
ing the initial parton distributions at leading twist for the
DGLAP evolution equations.
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